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Among several molecular targets that were proposed for fighting coro-
naviruses in general and have been been proposed again in the case 
of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infec-
tions, is a chymotrypsin-like cysteine protease known as the 3C-like pro-
tease (3CLpro) or the main protease (Mpro) [1, 2]. The enzyme is involved 
in proteolytic processing of coronavirus polyproteins indispensable for 
forming the replicase-transcriptase complex. Inhibition of Mpro blocks the 
viral replication, which in turn gives an antiviral effect. 

A dominant approach to blocking Mpro is by using covalent inhibitors. 
Several potent compounds of this type have been already reported for 
SARS-CoV-2 Mpro [3–5]. However, the covalent active compounds have 
their issues, e.g. a propensity to interact with off-targets causing side-ef-
fects and toxicity. Hence it is also important to develop non-covalent Mpro 
inhibitors. 

In order to aid the efforts along this track, we decided to perform 
a virtual screening (VS) campaign towards the identification of potential 
SARS-CoV-2 Mpro non-covalent inhibitors. The results of this work are free-
ly available to parties interested in COVID-19 drug discovery via the web-
page: www.cov2mpro.com [6]. In the current contribution we describe 
our protocol and its validation, and comment on some of the findings.

Virtual screening is a computational (in silico) procedure, the aim of 
which is to identify probable binders (active compounds) for a given mo-
lecular target: 
– from a certain large database of possible compounds, 
– by means of a particular in silico technique. 

While it is unrealistic to expect VS to find ready-for-market drugs, the 
screening may provide good-quality starting points (hits) for further me-
dicinal chemistry programmes. With the VS being only the initial step, 
the screened compounds should have some space for structural optimi-
zation (not too large size) and be readily acquirable. In light of this, the 
chosen screening pool comprised 2,658,170 million molecules of 300–
400 Da molecular weight, moderate lipophilicity (logP between 1 and 3),  
and “in-stock” status found in the ZINC database [7]. Additionally, we 
removed molecules with reactive or otherwise problematic functional 
groups or substructures.

As to choose which computational technique to employ for our prob-
lem, we decided to perform receptor-based screening by molecular 
docking simulations to the 6LU7 crystal structure of SARS-CoV-2 Mpro [5].  
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An alternative choice of QSAR/pharmacophore ap-
proaches (ligand-based) for our task would not be 
easily realizable because only scarce empirical data 
on SARS-CoV-2 Mpro inhibitors were available. Three 
docking programs (freely-available to academic re-
searchers) were considered: AutoDock 4.2.6 (AD) 
[8], AutoDock Vina 1.1.2 (Vina) [9], and DOCK 6.9 
(DOCK) [10, 11].

In order to validate the usefulness of these 
programs for docking-based virtual screening to-
wards the discovery of non-covalent binders of 
the SARS-CoV-2 main protease, we performed  
2 retrospective tests on available data pertinent 
to the main proteases of other β-coronaviruses.  
As these proteins are highly similar in sequence 
and structure, the results of such trials might be 
expected to give some reasonable indication of 
the software performance in the case of SARS-
CoV-2 Mpro. The tests were supposed to answer the 
following questions: 

How well do the programs reproduce binding 
poses of non-covalent inhibitors of β-coronaviruses 
Mpro reported in a few available crystal structures?

How good are they at finding true non-covalent 
inhibitors of SARS-CoV-1 Mpro among structurally 
similar decoys?  

For the first test, we considered 6 Mpro struc-
tures from 3 different β-coronaviruses: SARS-
CoV-1 (96% sequence identity with SARS-CoV-1 
Mpro, 2 structures [12, 13]), MERS-CoV (51% se-
quence identity, 1 structure [14]), and Bat-CoV 
HKU4 (50% sequence identity, 3 structures [15]). 
The crystallographic ligands were redocked to 
their native structures with all 3 programs. The 
success rate of correct pose prediction was 1/6, 
3/6, and 4/6, for AD, Vina, and DOCK, respectively. 
Considering the closest homologue of our target, 
that is Mpro of SARS-CoV-1, for which there are  
2 crystal structures, each program gave a correct 
pose in 1 of 2 cases while failing in another.  

For the second test, 46 non-covalent inhibitors 
of SARS-CoV-1 Mpro were collected from the liter-
ature [12, 13] and seeded with decoys found by 
DecoyFinder [16] (in the ratio 1 : 75, giving in total 
about 3500 compounds). The idea behind such 
a procedure is to check whether a given program/
protocol is able to discern ‘true’ ligands from ‘false’ 
ligands (decoys). The set was docked to 3V3M 
and 4MDS structures of SARS-CoV-1 Mpro using all  
3 considered programs. The results of this test are 
given as enrichment factors (EF, Figure 1 A) and 
receiver operating characteristic (ROC) curves in 
Figure 1 B and Table I.

In this test, AutoDock 4 performed exception-
ally well. In the cases of both structures, the pro-
gram was able to pick the majority of ‘true’ ligands 
at the very beginning of the ranking list. The en-
richment factors at the top 1% of database are 

here greater than 30, meaning that the program 
recognizes ‘true’ ligands with 30-times better effi-
cacy than random choice would. 

The performance of the 2 remaining programs 
was much worse. Vina did not find any ‘true’  
ligand in the first 1% of the database (EF1% = 0) 
in the docking to 3V3M, and a moderate EF1% of 
10.14 was found in the docking to 4MDS. DOCK 
performed better than that, but still with moder-
ate success at best (3V3M EF1% = 4.15, 4MDS EF1% 

= 14.53). On the other hand, Vina and DOCK were 
significantly faster, which is an important factor if 
large libraries are to be screened. In the validation 
set, average docking times per molecule were: 
207.7 s (AD), 24.5 s (Vina), and 27.7 s (DOCK). 

Weighing up both the results of the validation 
tests and the speed, we decided to perform the 
proper screening task in a 2-step procedure. First, the 
whole set of over 2.6 million molecules was docked 
to SARS-CoV-2 Mpro (PDB: 6LU7, [5]) with DOCK. Then 
the best-scored 100,000 compounds were docked 
also with AutoDock 4 and AutoDock Vina. The 
ranking lists coming from these 2 stages are free-
ly available via the webpage: www.cov2mpro.com. 
The page contains all the docked molecules in the 
native output format of each program, available for 
download in compressed archives. Furthermore, the 
on-site interface allows for access to the top scor-
ing 10,000 compounds (by the AutoDock 4 scoring 
function). A user can filter the molecules according 
to several simple filters in order to download only 
a certain subset of the top scoring entries.

For a  quantitative look-up of the interactions 
found in the top 10,000 entries, we performed 
a  BINANA analysis [17] of the predicted binding 
modes. It revealed that the screened compounds 
are predicted to bind mostly in S1 and S2 sub-
pockets of the active site, and a  good number 
of them are able to touch S4 and S1’ sites. This 
suggests that the potential hits can be subject 
to further structural optimization for more dense 
interactions with subsites other than S1 and S2. 
Reaching a wider extent of active site surface is 
common to covalent inhibitors, and some of them 
span across the whole active site [5]. Further ave-
nue for structural optimization may be an attempt 
to increase the number of hydrogen bonds that 
should give the ligands specificity. In the AD bind-
ing poses of the best-ranked 10,000 molecules, 
there are on average 2.7 ±1.5 hydrogen bonds.

With regard to chemical diversity, we conducted 
analysis of scaffolds and rings of the best-ranked 
10,000 molecules. A  query in the ChEMBL data-
base [18, 19] revealed that only 1 of the scaffolds 
found in our predicted binders (2-phenylfuran) 
is present in the previously reported SARS-CoV-1 
Mpro inhibitors. Furthermore, only a  few scaffolds 
are substructures of inhibitors of other viral pro-
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Figure 1. A – Formula for calculating the enrichment factor (EF) at a given percent of the ranking. B – Results of 
validation set docking for particular combinations of software and structure presented as EF plots and receiver 
operating characteristic (ROC) curve. TPR – true positive rate, FPR – false positive rate. A dashed line is the y = x line 
(performance of random classification). C – 2-phenylfuran scaffold as a core for Mpro inhibitors with the examples 
of known inhibitors and the predictions from the presented virtual screening
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teases. This means that our predicted binders, if 
confirmed to be hits, would provide chemical nov-
elty to the group of Mpro inhibitors. 

On the other hand, the fact that our VS pro-
cedure accidently ‘rediscovered’ the mentioned 
2-phenylfuran scaffold as a core for Mpro inhibitors 
is gratifying (Figure 1 C). This scaffold (present 
in 6/10,000 top entries, rather in the lower mid-
dle part of the ranking, average AD estimate of 
binding free energy, FEB: –6.87 ±0.48 kcal/mol) 
is found in 2 relatively potent covalent inhibitors 
(Figure 1 C) reported previously [20]. This finding 
might be some remote indication of the correct-
ness of the VS predictions.

In conclusion, the data obtained by our retro-
spectively validated VS protocol represent a large 
set of probable inhibitors of SARS-CoV-2 Mpro. The 
molecules are chemically diverse and novel com-
pared to the known inhibitors. Nonetheless, they 
are readily acquirable from commercial suppliers. 
Moreover, there is a reasonable space for structur-
al optimization both in terms of the properties of 
the molecules themselves, and the possibility of 
creating additional intramolecular contacts. Thus, 
the data form a good basis for pursuing an exper-
imental medicinal chemistry programme aimed 
at the discovery of anti-SARS-CoV-2 drugs. Still, 
because of the in silico character of the screen-
ing results, it should be underscored that the pre-
dictions require experimental validation to see  
if the VS hits are true SARS-CoV-2 Mpro binders.  
If confirmed, the molecules might need to under-
go structural optimization to achieve high activ-
ity and favourable physicochemical properties. 
Finally, pharmacological characterization will be 
needed to see if the putative confirmed hits are 
selective and safe.

Our VS results are provided freely via the web-
page: www.cov2mpro.com. Hopefully, along with 
other recent in silico predictions [21–23], they will 
be useful to accelerate anti-SARS-CoV-2 drug dis-
covery. The interested researchers are welcomed 
to use the data in their work. We are also open to 
co-operation proposals, in particular with respect 
to experimental testing of the VS predictions. 
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