Transformation of J-PET Raw Data into Images for Classification using Convolutional Neural Networks

Paweł Konieczka, dr Lech Raczyński, prof. Wojciech Wiślicki

Szkoła Letnia RadFarm 20.05.2022
Non-image PET data

Features selected to describe each coincidence event:
1) angular difference between the detection points
2) detection times difference
3) distance between detection points
4) energy difference
5) energy sum
6) attenuation factor

Development of classification method of coincidence events is crucial since only true events are essential for PET imaging.

Figure: Different types of events in PET measurement. Figure adapted from [1].

Non-image PET data

Features selected to describe each coincidence event:

1) angular difference between the detection points 144 deg
2) detection times difference 0.24 ns
3) distance between detection points 77.3 cm
4) energy difference 35 keV
5) energy sum 587 keV
6) attenuation factor 0.15

How to present these numbers as an image?
Non-image data transformation

- DeepInsight approach: First transform non-image data to a well-organized image form. Then apply CNN for classification.

Figure: Idea of transformation (T) from feature vector to feature matrix (image-form). Figure adapted from [2].

Results

DeepInsight „raw” method [2]
• perform kernel PCA to get coordinates of each feature
• final image as the rectangular convex hull
• the final image consists of as many non-zero pixels as there are features (in case of J-PET data – 6)

Our method (DeepInsight „modified”)
• feature engineering using kernel function
• perform PCA to get coordinates of each feature
• final image as the rectangular convex hull
• number of non-zero pixels can be manipulated (using 4th degree polynomial function gave 150 non-zero pixels)
Results

![Graph showing positive prediction value vs. true positive rate for different neural network architectures. The graph compares DeepInsight "raw" and DeepInsight "modified". The PPV at TPR = 0.95 is also shown for each architecture.]
Summary

IN PROGRESS

- article comparing results of different CNN architectures using simulated data – submitted to Physica Medica EJoMP.

TO DO

- apply similar classification method to three-photon coincidences
- CNN model training with simulated data -> testing on real samples collected at WUM on March 2022