

Transformation of J-PET Raw Data into Images for Classification using Convolutional Neural Networks

Paweł Konieczka, dr Lech Raczyński, prof. Wojciech Wiślicki

Szkoła Letnia RadFarm 20.05.2022

Non-image PET data

Features selected to describe each coincidence event:

- 1) angular difference between the detection points
- 2) detection times difference
- 3) distance between detection points
- 4) energy difference
- 5) energy sum
- 6) attenuation factor

Development of classification method of coincidence events is crucial since only true events are essential for PET imaging.

Figure: Different types of events in PET measurement. Figure adapted from [1].

Interdyscyplinarne **Studia Doktoranckie RadFarm** – Radiofarmaceutyki dla ukierunkowanej
molekularnie diagnostyki i terapii medycznej

Non-image PET data

Features selected to describe each coincidence event:

1)	angular diffe	rence betweei	n the detecti	on points	144 deg
----	---------------	---------------	---------------	-----------	---------

- 2) detection times difference 0.24 ns
- 3) distance between detection points 77.3 cm
- 4) energy difference 35 keV
- 5) energy sum 587 keV
- 6) attenuation factor 0.15

How to present these numbers as an image?

RadFarm - Radiofarmaceutyki dla ukierunkowanej molekularnie diagnostyki i terapii medycznej

Non-image data transformation

DeepInsight approach: First transform non-image data to a well-organized image form. Then apply CNN for classification.

x (feature vector) from feature vector to feature matrix (image-form). Figure adapted from [2].

Interdyscyplinarne Studia Doktoranckie

RadFarm – Radiofarmaceutyki dla ukierunkowanej molekularnie diagnostyki i terapii medycznej

Results

DeepInsight "raw" method [2]

- perform kernel PCA to get coordinates of each feature
- final image as the rectangular convex hull
- the final image consists of as many non-zero pixels as there are features (in case of J-PET data 6)

Our method (DeepInsight "modified")

- feature engineering using kernel function
- perform PCA to get coordinates of each feature
- final image as the rectangular convex hull
- number of non-zero pixels can be manipulated (using 4th degree polynomial function gave 150 non-zero pixels)

Interdyscyplinarne Studia Doktoranckie

RadFarm – Radiofarmaceutyki dla ukierunkowanej molekularnie diagnostyki i terapii medycznej

Results

RadFarm – Radiofarmaceutyki dla ukierunkowanej molekularnie diagnostyki i terapii medycznej

Summary

IN PROGRESS

 article comparing results of different CNN architectures using simulated data – submitted to Physica Medica EJoMP.

TO DO

- apply similar classification method to three-photon coincidences
- CNN model training with simulated data -> testing on real samples collected at WUM on March 2022

Ortho-positronium tomography with o-Ps→3y decays

e+e- annihilation with additional photon from β+ emitter deexcitation

Figures adapted from [3]